Selasa, 20 November 2018

Download Ebook Data Science: Grundlagen, Architekturen und Anwendungen (Edition TDWI)

Download Ebook Data Science: Grundlagen, Architekturen und Anwendungen (Edition TDWI)

Data Science: Grundlagen, Architekturen und Anwendungen (Edition TDWI)

Data Science: Grundlagen, Architekturen und Anwendungen (Edition TDWI)


Data Science: Grundlagen, Architekturen und Anwendungen (Edition TDWI)


Download Ebook Data Science: Grundlagen, Architekturen und Anwendungen (Edition TDWI)

Es gibt eine Menge von Publikationen, die Kandidaten in dieser letzten Zeit zu lesen sein. Dennoch kann es schwierig sein, für Sie zu lesen und sofort beenden sie auch. Um diese Schwierigkeiten zu überwinden, müssen Sie die erste Publikation und auszuwählen, wie zu machen für verschiedene andere Publikationen vorbereiten überprüfen nach dem Abschluss. Wenn Sie so verwirrt sind, dann empfehlen wir Ihnen, Data Science: Grundlagen, Architekturen Und Anwendungen (Edition TDWI) als Analyse-Ressource zu holen.

Wenn Sie immer noch verwirrt fühlen, das Buch zu wählen, und Sie haben auch keinen Vorschlag über welche Art von Veröffentlichung, könnte man bedenkt, Data Science: Grundlagen, Architekturen Und Anwendungen (Edition TDWI) Warum soll es sein? Wenn Sie eine Veröffentlichung erkunden gerade überprüft wird, werden Sie die Abdeckung Layout am Anfang betrachten, werden Sie nicht? Es wird sicher sein, zusätzlich die Möglichkeit, von Interesse sein, um den Titel zu sehen. Der Titel dieses Buches ist es auch so faszinierend zu überprüfen. Aus dem Titel könnten Sie interessiert sein, das Material zu überprüfen.

Aus dem Titel, werden wir sicherlich zeigen Ihnen zusätzlich das Thema zu erklären, zusammen. Wenn Sie in der Tat erfordern diese Art von Ressource, warum Sie es nicht jetzt nehmen? Dieses Buch wird Sie sicher nicht nur das Wissen, sowie Unterricht in Bezug auf das Thema, aus Wörtern, die in Anspruch genommen werden, ist es neue Spaß Punkt definieren. Diese Data Science: Grundlagen, Architekturen Und Anwendungen (Edition TDWI) wird sicherlich machen Sie keine Sorge fühlen, mehr Zeit in der Analyse zu verbringen.

Wenn Sie wirklich das Gefühl, dass Sie in dieser Publikation interessiert genug sind, könnten Sie es erhalten, indem Sie die Verbindungs ​​klicken gerade zu anbringen zu führen. Data Science: Grundlagen, Architekturen Und Anwendungen (Edition TDWI) wird in den weichen Dokumenten-Typen gegeben, man kann es so speichern und auch in verschiedenen Werkzeugen überprüfen. Wir implizieren, dass es sich aneignet und angeboten zu überprüfen, wann immer Sie wollen. Auch bleibt es im Zug oder jeder, wo Sie sind, können Sie die Freizeit zum Lesen verwenden.

Data Science: Grundlagen, Architekturen und Anwendungen (Edition TDWI)

Über den Autor und weitere Mitwirkende

Prof. Dr. Uwe Haneke lehrt seit 2003 an der Fakultät für Informatik und Wirtschaftsinformatik (IWI) der Hochschule Karlsruhe – Technik und Wirtschaft. Zu seinen Hauptarbeitsgebieten gehören Betriebswirtschaftslehre, Business Intelligence, Geschäftsprozessmanagement und Projektmanagement. Daneben leitet er das von ihm gegründete osbi::lab an der Hochschule Karlsruhe, wo er sich vor allem mit Fragestellungen aus den Bereichen Business Analytics, Big Data und Visualisierung beschäftigt. Prof. Dr. Stephan Trahasch ist seit 2012 an der Hochschule Offenburg Professor für betriebliche Kommunikationssysteme und IT-Sicherheit. Seine Schwerpunkte liegen in den Bereichen Data Mining, Big Data, Agile Business Intelligence. Seine Forschungsprojekte in der Forschungsgruppe Analytics und Data Science beschäftigen sich mit der praktischen Anwendung von Data Mining und Big Data Technologien in Unternehmen sowie der Weiterentwicklung von BI-Produkten um fortgeschrittene analytische Methoden. Dr. Michael Zimmer ist Senior Manager in der Service Line Analytics und Information Management bei Deloitte. Er beschäftigt sich mit der Konzeption, Einführung und Weiterentwicklung komplexer Data&Analytics Architekturen. Seine Schwerpunktthemen sind Data & Analytics Strategie sowie die Industrialisierung hybrider Analytics-Architekturen. Daneben ist Michael Zimmer Speaker, Autor und Herausgeber zu diversen Publikationen zum Thema agile BI und digitiale Agilität. Prof. Dr. Carsten Felden ist Universitätsprofessor an der TU Bergakademie Freiberg in Sachsen. Dabei hat er die Professur für ABWL, insbesondere Informationswirtschaft/Wirtschaftsinformatik inne. In der Lehre fokussiert Prof. Dr. Felden auf Business Intelligence und Predictive Analytics. Zentrale Forschungsthemen sind Arbeiten im Bereich der Analytics, des Data Warehousing, der Prozessanalyse, der XBRL und Analysen in IT-Reifegradmodellen. Er ist Vorstandsvorsitzender des TDWI Deutschland e.V.

Produktinformation

Gebundene Ausgabe: 336 Seiten

Verlag: dpunkt.verlag GmbH (9. Mai 2019)

Sprache: Deutsch

ISBN-10: 3864906105

ISBN-13: 978-3864906107

Größe und/oder Gewicht:

17,2 x 2,7 x 24,6 cm

Durchschnittliche Kundenbewertung:

5.0 von 5 Sternen

2 Kundenrezensionen

Amazon Bestseller-Rang:

Nr. 82.737 in Bücher (Siehe Top 100 in Bücher)

Ich denke, dass man dieses Buch mit dem amerikanischen Bestseller, „Data Science for Business“, vergleichen kann.Als „neutraler“ Schweizer lebend in Deutschland, nehme ich mir die Freiheit und spiele Schiedsrichter :-)USA:Das amerikanische Buch liest sich meiner Meinung nach viel flüssiger. Fast atypisch, wird auf großen Hype verzichtet. Warum fast eine ganze Seite benötigt wird, um die Euklidische Distanz zu erklären, werde ich wohl nie verstehen (angeben?).Deutschland:Viel „nüchterner“ geschrieben, dafür mit tiefem Verständnis der teilweise komplexen Zusammenhänge. Dazu super Einsichten aus der Praxis, speziell zur Geschichte, BI (Business Intelligence) und Scrum.Ein paar Stichpunkte:Kapital 1 – 4(+) Genial: von Data Mining zu BI zu Data Science.(-) Seite 20: „Auf dem Gebiet der Data Science ist domänspezifische Expertise unabdingbar.“Hmmmm, gefährlich. Die Amis nennen das „all data is the same.“ Anders gesagt, wenn ich einen Algorithmus trainiere, ist es mir egal, ob ich das Absprungs Risiko eines Kunden oder das Brustkrebsrisiko ermittle.(-) Seite 33: „Über die Zuverlässigkeit und Treffsicherheit des Algorithmus bestimmt die Qualität der ihm zugeführten Daten.“Das stimmt so nicht ganz. Auch wenn die Datenqualität perfekt ist, kann die Treffsicherheit lausig sein, wenn der Algorithmus kein Muster erkennen kann (z.B. wenn die Kunden zufällig abspringen). Das habe ich aus schmerzhafter Erfahrung gelernt.Kapitel 7 + 8(+) Genial: BI Landschaft, Self-Service BI und ETL.Kapitel 11: Customer Churn mit Keras/TensorFlow und H2O(+) Die Kosten-Nutzen-Kalkulation für Churn ist genial.(-) Ob man ROC bei einem unbalanced Dataset nutzen sollte, ist fraglich (siehe Kaggle).(-) Bei tabellarischen Daten ist Keras/TensorFlow wirklich keine gute Wahl. Overfitting ist unglaublich schwer einzudämmen. Die Erfahrung auf Kaggle zeigt, dass traditionelle Algorithmen (z.B. XGBoost) einem Deep Learning Ansatz in diesem Fall (fast) immer überlegen ist.(-) „Vorbereitung der Daten“ fällt etwas dürftig aus. Richtig ist, dass das Markieren von NAN’s in einer neuen Spalte ein guter Kaggle Trick ist (deckt MCAR, MAR und MNAR ab). Fehlende Wert (Imputation) sollte dann aber mit dem Mittel (falls Normalverteilung) oder Median (falls keine Normalverteilung) ersetzt werden.Kapitel 15: Scrum in Data-Science Projekten(+) Geniales Kapitel von A – Z.Konklusion:Sehr gute Lektüre, speziell für Praktiker in Data Science.

➤ Warum gekauft?weil ich vor Jahren Wirtschaftsinformatik studiert habe und den Schwerpunkt Information Retrieval hatte, seit Jahren mit Data Warehouses und mit BI zu tun habe. Einer meiner ehemaligen Azubis macht seinen Master in Data Science in Salzburg und nun dachte ich mir, schauen wir mal, was für aktuelle Literatur es zum Thema gibt.➤ BewertungPositiv✔ hat mich wirklich fachlich weiter gebracht.✔ die Aussagen sind sehr präzise formuliert und geht sehr in die Tiefe✔ das Buch bleibt sehr sachlich✔ der Hype um Data-Science wird kritisch betrachtet (vieles ist gar nicht so neu ... nur weiß das nicht jeder)✔ da wir in der Firma das Scrum Framework für unsere Projekte nutzen ist das Thema Scrum + Data Science für mich superNegativ✘ an manchen stellen doch ein wenig schwierig zu lesen und man muss ich wirklich sehr konzentrieren und manche Sätze mehrfach lesen. das ist ein Fachbuch, wie ich es von früher aus der Uni kenne➤ FazitDas Buch ist ein "echtes" Fachbuch, es hat mich tatsächlich weiter gebracht. Es hat mich darin bestätigt, dass viel, von dem was man heutzutage hört oder liest zum Thema AI/KI, Data Science, Deep Learning usw. doch noch in den Kinderschuhen steckt und viele, die von den Themen reden gar nicht wissen, worüber sie reden. Die Autoren gehen mit dem Thema eher kritisch, zeigen auf, dass das alles noch in den Kinderschuhen steckt aber auf jeden Fall ein spannendes und zukunftsweisendes Thema ist.Inhaltlich fand ich die Kapitel zur Hinführung von den Neunzigern (BI, Data Warehouse usw. ) in die Jetzt-Zeit sehr gelungen. Ebenso finde ich die Abschnitte mit den praktischen Beispielen sehr nützlich.Dies ist ein Buch, mit dem man im Arbeitsalltag wirklich etwas anfangen kann, es hat mich auf jeden Fall weiter gebracht. Jetzt gilt es das Gelernte auch in die Praxis zu transferieren, das wird spannend ....

Data Science: Grundlagen, Architekturen und Anwendungen (Edition TDWI) PDF
Data Science: Grundlagen, Architekturen und Anwendungen (Edition TDWI) EPub
Data Science: Grundlagen, Architekturen und Anwendungen (Edition TDWI) Doc
Data Science: Grundlagen, Architekturen und Anwendungen (Edition TDWI) iBooks
Data Science: Grundlagen, Architekturen und Anwendungen (Edition TDWI) rtf
Data Science: Grundlagen, Architekturen und Anwendungen (Edition TDWI) Mobipocket
Data Science: Grundlagen, Architekturen und Anwendungen (Edition TDWI) Kindle

Data Science: Grundlagen, Architekturen und Anwendungen (Edition TDWI) PDF

Data Science: Grundlagen, Architekturen und Anwendungen (Edition TDWI) PDF

Data Science: Grundlagen, Architekturen und Anwendungen (Edition TDWI) PDF
Data Science: Grundlagen, Architekturen und Anwendungen (Edition TDWI) PDF

0 komentar:

Posting Komentar